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Semilassieal Theory of Inelastic Scattering of a Particle

in the Near-Adiabatic Limit

Lit-Deh Chang and Walter Koln

Department of Physic.

Univesity, of California

Santa Barbara CA 93106

ABSTRACT: A semiclassical theory for inelastic scattering of a particle by a

two-etate system in the near-adiabatic limit is developed. The exponentially small

transition amplitude is calculated. The theory is an extension of Pokrovskii and

Khalatnikov's theory for above-barrier reflection. The analysis involves studies

of the WKB solutions in the complex coordinate plane along certain contours.

The region of validity of the theory is established. Our result has the same form

as the Landau-Zener-Sttickelberg formula; however, our theory is applicable to

more general systems. Numerical comparisons with exact solutions are presented;

the differences between our results and exact solutions become negligible as the

adiabatic limit is approached.
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L ITRODUCTION

The inelastic scattering problem of a particle by dynamical systems with internal de-

gree of freedom is an important problem in many fields of physics and chemistry. In

various contexts the internal degrees of freedom could represent phonons in a solid, vi-

brational states of a molecule, atomic energy levels, ionization states, etc.. Consider the

scattering of a particle by a harmonic oscillator for example. In the adiabatic limit in

*which a heavy particle is incident with low velocity, the oscillator wave function follows

the interaction potential due to the particle adiabatically and returns to its initial state as

the particle leaves the interaction region; even if inelastic scattering is energetically possi-

ble, the inelastic transition amplitude approaches zero in the adiabatic limit. For a small

but finite incident velocity the transition amplitude is exponentially small as a function of

a parameter which characterizes the deviation from the adiabatic limit. Near the adiabatic

limit a WXB expansion in the appropriate small parameter is natural, such an expansion

yields a vanishing transition amplitude in any finite order. Many approaches 1 have been

developed in the past to deal with the problem with various degrees of success. However,

questions of the validity and generality of those approaches have remained unresolved. In

this work we have developed a rigorous treatment of this problem to obtain exponentially

small transition amplitudes for general interaction potentials between a particle and a

system with two internal states.

Stfickelberg 2 was the first to applied a Zwaan type of analysis of the WKB solutions

to the problem of the inelastic transition. His theory was based on the so-called Stokes

constant method. Since the Stokes constant method has not been justified for general

problems, the validity of his theory remains unclear 3. Our theory is an extension of

Pokrovskii and Khalatnikov's theory 4 for above-barrier reflection. We obtain the same

result as the Landau-Zener-Stfickelberg formula in the near-adiabatic limit. Our theory

2



is however, more general and we establish its region of validity. In Sec. 11 we review the

work of pokrovukii and Khala-tnikov. In Sec. Mf we review the two-state model and the

adiabatic basis. Our procedure for obtaining th, transition amplitude is presented in Sec.

MV Numical result@ are described in Sec. V. Mathematical proof@ of the propositions

used in Sec. IV are pivu in the appendix.
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IL ABOVE-BARRIER REFLECTION

Consider a one-dimensional potential scattering problem with a localized repulsion

potential V (z). If E > V (z) everywhere on the real axis, the Schr6dinger equation

d t + a ( E - V (())1(z) = 1)

_---M ,(2)

has a physical solution correaponding to incidence from the left, which satisfies the following

asymptotic conditions:

I (z) d t + Be- ,} ,_ _00 (3)

T , a z -. # +00 (4)

where
limq= -n z-- V-() , (5)

R is the reflection coefficient and T is the transmission coefficient. In the semiclassical

limit a -- oo, T tends to one and R is exponentially small in a. On the real axis the WKB

solutions of Eq.(1) are

= *ia q(-)dz (6)

where

q (z) = VE--V(z) , (7)

and Z is an arbitrary but fixed lower bound which may be real or complex. These solutions

have an error of order c - 1 . In the following we shall use the symbol a to denote an

approximate equality which becomes exact in the limit a --* oo. According to the boundary

condition (3), the physical solution can be expressed in terms of the WKB solution:

,I(z) %v A+1+(zz- ,z oo, (8)

4



where A+ is a constant. As we trace the solution along the real axis beginning at +oo,

Eq.(8) remains valid uniformly all the way to -oo. But %+ does not include the exponen-

tially small reflected wave. In fact R cannot be obtained even if we expand the solution

to higher orders in powers of a- . Pokrovukii and Khalatnikov 4 developed a method for

obtaining the exponentially small R to leading order. We now review their work briefly.

Throughout this work we shall use z to denote a complex coordinate and use z to

denote a real coordinate. We assume that all potentials can be analytically continued into

those regions of the z plane which are relevant to our discussions. In order to obtain R we

must construct a solution of the Schr6dinger equation along a path in the z plane where,

even as a - oo, the ratio of reflected to incident wave functions ( see Eq.(3) ) remains

finite and does not tend exponentially to zero. This path passes through a point z,, defined

by q(zc) = 0 where the WKB solution breaks down. However, similar to the familar case

of a classical turning point on the real axis., near ze an exact solution of the Schr6dinger

equation can be obtained and joined to WKB solutions. if there are more than one zc, the

one closest to the real axis must be chosen.

Consider now the transition point ze. The appropriate lines pasing through z, are

given by the condition,
z

Im f q(zl)dzl = 0 (9)
Ze

They are the so-called anti-Stokes lines, on which the functions %+ (z,zc) and %-(z,z,)

have the same magnitude, regardless of the value of a ( see Eq.(6) ). There are altogether

three anti-Stokes lines, two of which are shown schematically in Fig. 1. Li and L 2 are

useful to us because they form a contour connecting +oo and -oo. Asymptotically they

run parallel to the x-axis at a distance which we denote by wi. The procedure of Ref.(4)

for obtaining R is as follows.

Starting with the right-going wave (4) at +oo on Li, we find the wave function in the

5

4..,



asymptotic region,

1 (10)

where z = z + iy 1 . Except in a small neighborhood of radius O(a-2/3) near zc, 'Y(z) can

be represented on L, by

*(z) m A4+*+Cz,ze) ,(11)

where

A+ = Te- iaf +  (12)

and

- L{ J (q()- )d' - ,zc} (13)
ze

The solution is then matched to the exact solutions of the Schr6dinger equation in the

vicinity of ze, which are the familiar Airy-functions. The Airy solutions are valid in a

neighborhood fl of radius 4 around z ( see Fig. 1 ),where the range in which

the term (B - V (z)) can be approximated by the linear term of its Taylor expansion at

ze; 4 is evidently independent of a. The matching region lies between Iz - zj = de and

1z - zel '. a- 2/3. a must be large enough so that the matching region exists. Similarly,

except for a small neighborhood of ze, the physical solution on L 2 can be represented by

a linear combination of the two WKB solutions, Eq.(6),

%Pz)% {BE 1P+(z, zc) + B-T(z, z,)} (14)

where B+ and B- are determined by a similar matching procedure to the Airy solution

in the vicinity of z. B+ and B- have the same magnitude. On L2 , as z -c -o, qf(z),

Eq.(14) takes the form

TI(z) -LB+e-?aq-* + B-eif- -7eiazf}

AN

, . . . .



When the appropriate values of A+, B + and B- are used and comparison with Eqs. (3)

and (4) is made one finds

T = eia( +-) (16)

R OW (17)

Notice that IT = 1, while R is exponentially small.

Let us note in passing that R cannot be obtained by using a contour consisted of L

and L , corresponding to L1 and L2 , but pasing through z, the complex conjugate of

ze. The reason is that whereas on L1 and L2, the asymptotic magnitudes of the incident,

transmitted and reflected wave are all equal, on L* and L2, the magnitude of the reflected

wave is exponentially smaller than those of the incident and transmitted waves by a factor

of e "-4* . Such an exponentially small term is "mimed" by our procedure.

I7
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IM ADIABATIC BASIS

We consider the one-dimensional scattering of a particle of mass M by a two-state

system with energy splitting w. We denote the internal states by 10), the lower energy

state, and I1), the higher energy one. They form the so-called diabatic basis for a two

dimensional vector space. The Hamiltonian of the total system can be written as

H = S + Hs +Hint(18)
2 dX2Hp = -j, + Vo(z) ,(19)

Hs = --- a' (20)2

Hit = Vl(z)c +V2 ()o' , (21)

where Hp is the Hamiltonian of the particle, Hs is the Hamiltonian of the two-state system,

Hint is the interaction Hamiltonian and am, a,. are Pauli matrices. The two-component

. Schr6dinger equation in this basis is

H (o=) E (. TO() (22)T\ (Z) %J(=)

We assume that V0(z), vi(z) and V2 (z) all tend to zero as x --+ oo and that the particle

comes in from the right. For a fixed energy, the velocity of the incoming particle decreases

as the mass is increased. In the limit of large a the particle acts on the two-state system

as a slowly varying external field and the two-state system follows nearly adiabatically; in

the infinite a limit there is no inelastic transition. In the extreme adiabatic limit (a = oo

) the Hamiltonian is trivially diagonalized at each z by the transformation 1' 2

( coaf(z) jinO(z)) (23)

-siaE(z) coad(z)
where

tan 2 V2(z) (24)

V1 (Z)

with



212
.(25)

(25) does not determine O(z) uniquely; we nake the choice of O(z) to tend to 0 as x -- oo

so that

f 1/2

C&-Z Vi v(Z) (26)

1,V+ V2

sinO(z) +(7 z (27)72 V (z )  2 (z)

'4 + 1 () + V

We shall assume that there is a pair of points zc and 4 where V1
2 + V2

2 v.nishes. If

there are more than one pair of ze we choose the one which is closest to the real axis.

v/V1i+ V2 i defined to be positive along the real axis with one cut going from Z, to Ioc

and the other from z4 to -ioo. This choice of branch cuts insures that the mixing angie

O(z) is a continuous function of x on the real axis. For z real, U is unitary. The new 'anis
i.

vectors

".'. 11,Z )1

constitute the so-called adiab&tic basis. In this basis the Hamiltonian taies .hie ;or-

Ha =

where UO, U1 are the adiabatic potentials,

Uri() - v0(Z) - v, (zr -

and

U((Z) M VO(z) - V. z- I

9
"S
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The Schr6dinger equation become.

(00(z) O0(Z)

Ha =E ( (33)

where

#1 (Z U ( 1(z)(34)
It is easy to see that

TOWz)I) + 01W1)1) =00()00,z) + 4i1z)1,z) (35)

If the off-diagonal terms of Ha are neglected, to and 01 are uncoupled. The WKB

solutions a .cc) for thins uncoupled equations have the usual formm,

-*ia f qo(z)dz
1 (6

and

*ia f q, (z)dz

Vqi~z)(37)

where

q (z)=E'y'Ui(z (38)

and z(i) is an arbitrary but fixed lower bound. The branch of qi (z) is defined so that

qi (z) = VTF-.-i~z)I or z> zi and q~z) = iV! - Vi(-Z)I for z < zi, where z, is the

classical turning point defined by

E E- U(z 1 ) = 0 ,=0, 1 (39)

If we treat these solutions at the classical turning points zi, we will obtain a reflection

coefficient of magnitd 1 and a vanishing inelastic transition amplitude. This remais

* true in all higher order WKB approximations. We need to go into the complex z plane

and follow the solutions along appropriate contours. We need to consider the singular

10



points : z0, z1 and z ( see Fig. 2). Note that at a, the function 0(z) diverges and

hence the off-diagonal terms of Ha also diverge, which signas the failure of the adiabatic

solutions. In Fig. 2 we show the anti-Stokes line. defined as follows,

z
LI,L2 :"Bai (q0 (z) - q1(z)) d, 0 (40)

zLs: I~m fq(z)d = 0 (41)

and

zL 4 : IinJfo(z)d. = . (42)
zo

L3 and L4 are just the anti-Stoke. line, for ordinary potential scattering problems with

clasical turning points at zI and o. L1 and 2 are the lin eon which4 z, z) (I (z, Z"))

have the same agnittude as * (z, ze) (*-F(z,zxc)). The topology of Fig. 2 depends on

the potentials and the energy. Since U1 > U, : > zo. Both :0 and :1 shift to the right

as the energy is decreased, whereas z does aot depend on the energy. In most previous

discussions of Stfickelberg's theory, only the case. where Re(zc) > zO, z1 are discussed.

We will see that this restriction is not necesary. The general features of L, and L2 are:

1. LI extends to infinity and becomes parallel to the real axis at a distance yl for z --* oo;

and 2. L2 intercepts the real axis at a point 3 which can easily be shown to be always less

than zI. Both yl and ! depend on the energy for given potentials.

11



IV INELASTIC TRANSITION AMPLITUDE

Consider the physical solution of the Schr6dinger equation (23) along the real axis with

the following asymptotic conditions:

%0(z) - 1(6_-'90' + .e46 ) , z

"00 ,z -00 -- (43)

TI(z) A  , z-. o0

-. 0 ,z- -oo (44)

where q, = q(z -. oo). In the adiabatic limit A+ = 0 and 141 is 1. In the near-adiabatic

limit, A+ cannot be determined from the usual treatment of the WKB solutions to all

orders wherea 4 can be determined to leading order, since its ma itude is - 1. We

have seen in Sec. II that at the complex transition point ze the adiabatic solutions break

down. We shall obtain the transition from one state to the.other by a careful treatment of

the rd equation near se: we need to obtain the exact solutions near c in order

to connect the WHE solutions on Ll and L2. One might hope to obtain the exponentially

small amplitude following a procedure similar to that described in Sec. I1; however, the

geometry of Ll and L2 are very different for the two cases. In the case of above-barrier

reflection 1,2 extends to -oo where WKB solutions become the exact solutions and yield

the exponentially small reflection amplitude. In the present case L2 goes down to the real

axis where the potentials do not vanish and hence the exact solutions are not known. A

different strategy is needed in making use of the solutions on Ll and L2.

It in helpful to think of the physical solution as a linear combination of two-component

Jost functions (JF) 6. A JF is a ( non-physical ) solution of the Schr6dinger equation

which asymptotically has only one incoming or one outgoing wave in one channel. The

exact physical iolution corresponding to the asymptotic conditions (42) and (43) can be

12



written as,

'L'o1z 0 ((-)z +4P )() + At''+~) ,(45)

-Z 0( 0 -) (Z) + 4~(0+) W + A+ lk'+)(z (46)

where *':) (z) is the component in channel i of the JF with unit incoming (-) or outgoing

(+) amplitude in channel j. Our objective is to determine the coefficient A+ which, by

Eq.(44), is the transition amplitude. The procedure is as follows.

1. We first obtain 4, whose magnitude is - 1, by ordinary WKB techniques, applied

entirely within channel 0. ( Ordinary reflection by a barrier. )

2. Next we note that, as x- -* each of the JF components in Eqs.(45) and (46) grows

exponentially like #+ , Eq.(37), which is the most rapidly.growing exponential. We shall

choose A+ so that the total coefficient of -" vanishes.

3. To accomplish step 2, for Eq.(46), we need to know the coefficient of 4+, for z -- -oo,
of each of the JY components I) 'Pfo+)( and 'P(1+(z). The first two coefficients

are exponentially small and need to be carefully calculated on appropriate contours ( see

below ). The last coefficient is of order 1 and can be easily obtained by ordinary WKB

techniques, applied entirely to channel 1.

4. Since this procedure determines A+ uniquely, it is not surprising that, in fact, it also

makes the leading exponentially growing term of Eq.(45) equal to zero.

We shall need a number of propositions which are proved in the appendix and which

have been verified in our numerical calculations.

Proposition 1. Consider the Schr6dinger equation (33) on the real axis. Under con-

ditions detailed in the appendix, the physical solution, which vanishes at -oo and has an

incoming wave in channel 0, has the following components,°2
oz) ) Ai(-a3 o(Z)) ,everywhere (47)

13



a'/601 (z) 0 o ,X > ZO, (48)

where

(C,(z))1/2 f qidz (49)

z*

and qi is given by Eq.(38). The branch of ei in Eq.(49) is defined so that &(z)

[-U'(z,)]1/3 (s _ z,) in the vicinity of x,. Proposition 1 establishes the validity of the

ordinary WKB solution.

Proposition 2 gives the exact solutions in the vicinity of ze.

Proposition 2. Consider a circle fne of radius de around z . We denote the intersection

of fle with Ll and L 2 by 3 I and 2 respectively (see Fig.2). Assume that VV i + V2V 2 does

not vanish at ze. Then for sufficiently small de, the general solutions of the Schr6dinger

equation (23) in nare given by

'90(z) M iaq.C (s+Ai(-ca2/3C2/3) + b+Bi(-cz2/3C2/3 0)

+ 6-iaqC (a.Ai(-a 2 /3 C2/3 c) + b.i(-a2/3C2/3 )) (50)

to the leading order in C, where

C = z- ze(51)

= , - Z , (52)

Ic = I IV , (53)

and a_+ and b* are arbitrary constants.

Proposition 3 and 4 give the WKB solutions on LI and L 2 which are needed for finding

0+)

Proposition 3. Consider the anti-Stokes line LI. Let z, denote a point on LI at a

fixed distance from zc and let L" denote L 1 , excluding the segment from z, to z1 . Under

14



conditions detailed in the appendix, there in a solution of the following form,

0'0 (Z) -V04 Z' " .,.,) (54)

No (55)
*0(z)

for zon L-.

Proposition 4. Consider the anti-Stoke. line L2 . Let z2 denote a point on L 2 at a

fixed distance from z, and let Lj denote L2 , excluding the segment from z, to z2. Under

conditions detailed in the appendix, there is a solution of the following form,

,o(,) M ,m, (,, ) , (56)

*I.,(,,) ,,, *" (.,,,) ,(57r)

for z on L'.

On L2 , *+ (z, ze) and *+ (z, ze) have the same magn tude. Therefore their coefficients

can be determined accurately. To the left of the point Z, +(,z,) become, exponentially

larger than 9 (Z, Z,), since the real part of the exponent of the former is larger than that

of the latter for z < z.

We now proceed to find the leading exponentially growing parts (for z -- -oo) of

the JF components. Consider first the JF component 'P0 +)(z) in Eq.(44). As z -- +o,

(0+) (z) on Ll in an outgoing wave in channel 0,

,(+,z (-Z +0_ , (58)

where z = z + iyI . According to proposition 3, the continuation of this function on L I is

given by

0+)(z) =-(0+)+ (z, z)cos(z) (59)

where 0+(z, zc) is the WKB approximation, Eq.(37), of the component of the exact solu-

tion along the adiabatic basis vector 10, z);

(0+)_ -a (0)
--,Ze (60)

15
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00

1C --/(q0 - 40)dz - q0 (6

and cosf(z) is given by Eq.(27). The approximation is valid on L 1 , from +oo up to a point

al, where ja - t = 0(a- 2/ 3).

We now match this WKB solution (59) to the appropriate linear combination of Airy

functions, Eq.(50), at a point m1 at which both the WKB solutions and the Airy solutions

become exact in the limit a --+ cc. By taking, for example Iml - zcj _ a - 1/3, we see that

iml - zlJ/Jzr - el - a 1/ 3, validating the WKB solutions, and I / - - z--_ a - 1/ 3 9

validating the Airy solutions. At m1 we can use the asymptotic form of the Airy functions,

since the argument, a 2 /3 C2/3 (mi - Xe)1, in 0(a1 / 3 ):

Ai-) 1 1 , 3/2 +f)
3;1/4 4in) 4 (62)

2w" 2wr2w < arg( ) < 2T

3
Ei(-w) -- co.(& 3/2 +V7( r ;3 /4 3 4. (63)

Accordingly, inside fn,, the J component is given by

{Aid(-a2/3C2/3c) - iBi(-a 21 3C 2/ 3C)} (64)

where C is given by Eq.(53) and

D1 a (65)
~V 2y
1 + V

In the same way we match the Airy-type solution (64) inside fl,, to the appropriate WKB

solution on L2 , where the asymptotic forms of Airy functions can be found using the

following identitim:

Ai(e-i21 r/3w) = e-"1/ 3 {-Ai(w) + 'Bi(w)j (66)
22

Bi(e1 2 r/ 3 W) - e-i/3{3iAi(w) + 1 Bs()} (67)
2 2

16



This yields on L2,

(z M o+)-9 ,z)coe(z) - A°,+) 4 (z, z)aind(z)(68)

-() (0+) (69)

where e -±1, and for any spcific potentials is given by

e = H icoto(z) (70)

To be definite we choose i = +1 for the fllowing calculations. From Proposition 4, Eq.(68)

i valid on the whole Lj down to the real ais. ( See Fig. 2. ) On the real axis, to the

left of the point z, the Jr component is dominated by *+" (z, ze).

Therefore, on the real axis, we have

1 j)- - z ,z- +oo, (71)

ow --(')(z)*i-8(z)' ,=< 2 (72)

where

0+) (z)=, , (73)

A€°+ ) = " - (74)

, =f(q (z) - q,)dz - qizi (75)

and
ze ze

?I + i J = qo(z)d -f q(z)dz (76)

It o easy to see that - is positive, hence, A+ is exponentially small. The 0-component
.}:, Of the J'F, T(0-)(z), needed in Eq.(44) can be obtained simply by taking the complex

--:; conjugate of Cz):

%(- X) -iaeqoz 0'(

.4..:,=, - U )(z),in9(z) ,z < • , (78)

where

17
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= A ;)(:, z) (79)
4 1-)(

A(°- ) = iee' ' (80)

Finally we require, for Eq.(44), q*ol+), the 0-component of the JF corresponding to

channel 1 outgoing. In the adiabatic basis this JF is, for our purpose, obtainable every-

where on the real axis by ordinary WKB turning point methods:

'~+) (X) -. 1 ,: --* +00 ,(81)

,z<:(,+) z ) (82)

where

(1,z e- (83)

and

6(1+) W 0 ,everywhere.(4

The reason is that for this JF a single component, 4(+),z) is dominant everywhere on

the .-ais; this is =I the case for the iF'. (0+) and (0-), for which ,0,*) (z) is dominant

for z > 2, while ,00)(z) is dominant for < 2. The required component ,TO (z) in the

diabatic basis is given by

%#(+)(z) z) eerywhere (85)

We are now ready to determine the required coefficient A+ from the condition that the

coefficient of the dominant exponential, for z -- -0o, in Eq.(44) vanishes. Substituting

Eqs.(72), (78) and (85) into Eq.(44) give.,

A( -) +4A + 0 (86)
I',* lZ I I,X

For a wave incident in channel 0 with unit amplitude,

4 , -i.2irt  (87)
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Substituting in Eq.(86) for A ), A~(0+) and Ad'+), we obtain, on solving for A+,

A+ %v -2i~m .Yiaq~h (88)

Incidently, we can verify that the coefficient of 0+(z, zi) in Eq.(45), for z < z, also vanishes

as it should if At is given by Eq.(88).

Iollowing the standard definition of the S matrix,

i...L (ei'fo - soo"c~iat) ,-. +00 (89)

PI(z) -_Sol i&1  , -. +00 (90)

we find that

00 (91)

and

Sol at 2sin(cM)e-eQ7Cia +q) (92)

(If e i uchoen to be -1, the right hand side of Eq.(92) would change sign.)

Eq.(92) has the same form as the Landau-Zener-St.ickelberg formula in the near-

adiabatic limit. However whereas the earlier derivation was limited to the case where

* z is near the real axis ( almost crossing adiabata on the real axis ) and well to the right of

the classical turning points z0 and zt, our derivation is not limited by these restrictions.

We shall now indicate the conditions under which our near-adiabatic approximation is

valid. It require thelexistence of admissible matching points ml1 , on L, and m2, on L2

(see Fig.2). It is easy to see that if ml exists so does m2 . The existence of n 1 requires

, that

!Zi - ;c <dc .(93)

4Here zl is given by the following condition

1Id 1 _z
a cd qi (z) - =1 (94)
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which in the analog of of the condition signalling the breakdown of the standard WKB

approximation 7,

Sd 1 (95)I-~(-- x ; l5
a dxq(z)

and de in the distance from z over which the following expansion is valid

qO(z) = - V0(z) + + V2

= q+C(z- Z)1 /2  (96)

where qe and C are defined in Eqs.(52) and (53). Combining (93) and (94) gives

,g./2 lCl :a 1 (97')

Since a = VM/h it in evident that for any given potentials and given incident energy, the

condition (97) will always be satisfied for suficiently large M.

The left hand side of Eq.(97) in the dimensionles large parameter which characterizes

the deviation from the adiabatic limit. ( Let us remark that condition (97) is not necessarily

equivsmnt to the intuitively suggtiv criterion that the exponent ay, in Eq. (92), be ' 1.)

2
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V COMPARISON WITH NUMERICAL RESULTS

We present comparisons between our results and exact numerical solutions. We choose
exponential potentials, ,

V0 (z) = u0e- , (98)
tw

V(z) = ue- -' - (99)

V2(-) = u2e-' (100)

whem the i we the itrlmgdt of Vi(z). Varying uj's we can study both curve crossing and

curve nonrming cases. We shall set Aw = 1.

1. Curve non-crossing. In this case we choose u0 = 1.02, ul = .02, u2 = .2. Two
p%

energies E = 1,10 are studied for different values of a. The two cams have very different

topology of z,, z, z and anti-Stokes lines as shown in Figs. 2(a) and 2(b). Although

the diabatic potentials Vo(z) * T1 (z) cros atz= -3.2, this point is far to the left of

the classical turning points. In the region where the transition takes place the adiabatic

potentials are almost parallel to eah other. In Fig. 3 the absolute values of 4, 0 +) (z)

and #( 0+ ) (z) for E = 10 are plotted for different values of a. For large a, channel 1 is

seen to dominate for z < 2. Numerical results for the S matrix are listed in Table I. The

differences between semiclassical and exact solutions diminish in the limit of large a for

both energies.

2. Curve crosing. In this case we choose uo = 1.2, uI = .5, u2 = .2. The diabatic

potentials cross at z = 0. Two energies, E = 0.7,1.5, are studied. For E = 1.5, the

topology of zczo, z and anti-Stokes lines is similar to Fig. 2(a) and for E = 0.7, it is

similar to Fig. (2b). Results of the S matrix are also included in Table I. The differences

between semiclassical and exact solutions also diminish in the limit of large a for both

energies.

21
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VI CONCLUSION

We have presented a rigorous treatment of the semiclassical theory for obtaining ex-

ponentially small inelastic transition amplitude. The region of validity of our theory is

established. Our result,Eq.(92), has the same form as the Landau-Zener-Stfickelberg for-

mula in the near-adiabatic limit. However, our theory is more general and is applicable to

a wide range of systems.

ACKNOWLEDGEMENT

One of us ( WK) acknowledges with thanks that L M. Khalatnikov referred him to the

important reference 4, by Pokrovskii and Klatnikov. We also acknowledge correspon-

dence with V. L. Pokrovskii about the behaviour of a closely related system ( a particle

incident on a harmonic oscillator ) in regimes other than the near-adiabatic limit consid-

ered in the present paper. This work is supported by the Office of Naval Research Grant

No. N00014-84-K-0548 and the National Science Foundation Grant No. DMR-8310117.

22

,A "* *" % " * *" " .-. -, -. .. . . , 1. 7.'.



APPENDIX

In the following propositions we make the same assumptions about the potentials as
in the text. The proofs of propositions 1, 3 and 4 are analogous to Jeifreys' proof 8 for the
ordinary potential scattering problem. For convenience we shall use N to denote a bounded

constant independent of a. The value and the dimensionality of N my be different at

different places and are irrelevent to our discussions.

L Proposition 1. Consider the Schr6dinger equation (33) on the real axis. We assume
that for the given energy E each adiabatic potential Ui, i = 0, 1, has only one classical
turning point, zi, and that Ui(xi) < 0, which will normally be the case. If the following

functions are bounded,

=4"O, qoFO(z f lfoo(ZI)i + 01(z. (z') Woz') ,(101)

-O

F1 (z) ~ III(z')I + Ifio(') j.(12

and if the following quantities can be bounded by a116N,

2j h dx=',* = + o V, (T) (e) ( o(e) ± q(j)

( 0, 1), (0,), (103)

where z- zi ± Na-2/3, ,is given by Eq.(49), fi, and h are given by Eqs.(109)-(l12),
then the physical solution, which vanishes at -oo and has an incoming wave in channel 0,

has the following form,

-- ( ) Ai(-a 310 (z)) ,everywhere 104)

.-:.- o =) 0 , < O,

a"/0 (z) 2 0 ,x > Z)j, (105)
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Proof. Defining a new set of variable.

xji(Z()) = - 4(z) ,i =0,1 (106)

the Schr6dinpr equation (33) can be written as

dj2 + a2 XO = foo( O)Xo + fO(CO)xj + h(O i(107)_ d2 0 " a2f,0 = f00( 0)X0 +I f01(f0)X1 h(C0)_±X1 (108)

d2  dj+ a,2 e1x1 = fii( )xi. + fio( i)xo - ()-o(o)

where

h(2) = (109)
CO I el _)(1/ 2( )2

-i _ - !i ) + - ,i =0,1 (110)

2 (e.)T 4(4) (4l

foi(60 = (~') 1 2 (01e 1-0 ell1  (111)
_ ~~~6 I 1 -) 1/2 li

iO() = 1 (-'Co' + i'o") (112)Ao~e) =(eoC,)1/2  .

In EI.(107) and (108) xi are functions of ei.. The corresnpondence between CO and el is

one-to-one. If X1 is negiible, Eq.(107) involves only channel 0. The solution of XO is

given by Eq.(104). To show that Xi is indeed negligible we transform Eq.(108) into an

integral equation 8. We need to construct the Green's function. The general solutions of

the homogeneous equation,

d2 X(0) X)+)=0 , (113)

are Airy functions:

1X( =l) = ajAi(-a 2 /3 1) + bjBi(-a 2 / 3 
1) (114)

where al and bl are arbitrary constants. The required Green's function which satisfies the

differential equation,

d22 2 Ci((4, 1) (el - , (115)

24



has the following form:

G1 (C1, Zj) = Ai(- a 2/3 
,1) PIfl) ,'I <

= {+j~j(--a:/3C1) + Bi(-,m2/3CI)j.I) ,el > ~'1, (116)

where G1 --p 0 an - -oo and, as el -- +oo, G 1 i an outgoing wave in channel 1 for

fixed 1. Solving for G 1, we obtain,

, =  Ai(-_a213 FI){iAi(-a2/3 I) + Bi(-a 2/3 1 )} , > . (117)

The integral equation for the required solutions is,

xi(1i) = 1(X1 + fiOxO- _1XO (118)

-_00

where the hMoVe1o term is chose to be 0. ( We have omitted some arguments of

the funcitons to shorten the notation. The first interation of Eq.(118) is obtained by

subgtituting X1 with 0 and XO with Ai(-a 2/3 Co):

dZ

The right hand side of Eq.(119) can be written as a sum of three terms,

+00

S' (-a2/ d-o- h-"}Ai(-°O) ,(120) i

(, 2)( __ "7
-" - d) (121)

-000(2) (122)-oo

where
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Ka+(C, C) = Bi(-, 2" i3 fj)Ai(-a 2 /3/j) (123)

Ka- = Ai(-a 1 3  )Bi(-a2 1 3 ) (124)

Since Ai(-a 2/ 3 fl) is bounded everywhere and Ai(-1 321) is exponentially smaller than

Ai(- 2 / 3ej) for z < :0, we have

xAi_,23 .)( )  ' 0 ,z < Z0 (125)

al/,x)(Z ) a 0 ,z > Z0 (126)

Both X(2) satisfy equations similar to (125) and (126). We shall give the bound

for the second term of X(2):

X a22)(3) _dr ,.h1A,(-,2/3Fo) Jd(127)
the bound for other terms iX and x(') can be obtained similarly. Consider first the

region z <: z. In order to utilize the asymptotic form of Ai(-a2/ 3F0 ) we disscuss two

cases , z < and z < z z, separately.

For : < z , using the asymptotic forms of Airy functions, we have,

airqjdz" X a Iqidz"+f IqOjdzP")fI d'q0(z)A z) T, f (128)
-00

where

h(z) (129)

The integral in Eq.(134) can be written an

__________ d a(f lqljdx"+f qOjdz1I)f -ia(qo0(e) + ql (xl)) z
- O

26



Performing an integration by part in this form, we obtain,

1 qo (-) -eflqoidz'
1A) 1H 17/6,,) ( /.. (z)+lz))e I

ZI  so st

d o_ -a(f IqIxdx"+f Iqold"-f Iqlde')
% + f a,)e .(130)+ 7/6

Since we have assumed that there is only one classical turning point for each adiabaitc po-
ZI zq

tential, the function f IqjId-+f qoIz" is monotonicaily increasing an z moves from z0 to

- .Hence the exponential term in the integral of Eq.(130) is bounded by ezp(-a f qo Idz').

From this and the assumption about FO+, it is not difficult to see that

1 )1< Ai(-,,/,o=) , (131)

For z" : Z:5 zo the asymptotic forms of Airy functions are not valid. However, both

Ai and Ei are bounded, we can estimate the magnitude of the integral easily. In this

region the integr nd can be bounded as follows:

1" 1 .Kl (132)

and
I-W Ai(-02/3F'0)j_: a23 . (133)

dtj

Since the integration region is only of O(c - 2/ 3 ) , the integral is only O(a-1). Therefore

we conclude that
0 Ix < ZO (134)

40(z)

. 02) +
For z > zo, XI can be analized for regions z0 < z < z-, z" < z < z and Z > xi

by a similar treatment. We obtain a1X 12) (z) , 0.

I. Proposition 2. Consider a circle flu of radius 4 around zc. Assume that VVI + V2V 2

does not vanish at ze then for sufficiently small d and sufficiently large a, the general
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solutions of the Schz6dinger equation (23) in fie is

So() M iaq. (,+,.Ai(a2/3C2/3C) + b+Bi(,2/3C2/3))

+ -'q,4 (a,_.Ai(a2/3C2/3S) + bBi(a2/3C2/3j) , (135)

to the leading order in C, where C, q© and C ae given by Eqs.(51), (52) and (53); and a*

and b* are arbitrary constants.

Proof. Eliinating 11(z) from the Schr6dinger equation we obtain the fourth order

differential euation for 1'9(z),
~±2

D1o(z) a + h (z)'y + f2(z)_ + h (z)-± + fo()2 o(z)

=0 , (136)

wher

3 = -2"2 (137)• ' V2  '

f2 = 2(E - Vo) + a 2(-.- + 2(y ) (138)
2 V2

A =2aVV (139)

fo = 4((E -vo) 2 -v)
2(VI) 2 - V2V' (E_ Vo - v) + v

+21_(V, + V) + 2 + V)] (140)

Pulling out a fast oecillating part of to,

'g 0 (z) = e iaqCX() (141)

the solutions of x(C) include two slowly varying solutions ( for sufficiently small 1sf) and

two fast oscillating solutions; we will find the former. The equation for X reads

+I~ { 3(z)±-+ 2(z) + 1(z) + o(z)X(z) =0 ,(142)
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Where

g3 (s) so -4iaqc (143)

g2(a) ov 2a2 (Ev - VO - 3qc') (144)

g1 (S) ft 403 qc(E - V0 - qc')

+2zV0  V, - (V0 - V1 + 3q)4I (145)

cV2

0 VI

+2a 0iq_ -V 3 +E VV_ -c2)1 (146)

Linearizing the potential. at xv and chtanging variable from x to c we obtain

0o (147)

* where

S 3 -- 242 (148)

S2 = - 4 qc (149)

S1 = -2al -2aO + 2 La-2+ 4q(10
b2 C62(1)

T2 =4iqcu0  (151)

so = -il'(bla 2 - alh) (152)

To =2(a~b2 + alb) ,(153)

with

C~i =Vil ZIC)(154)

b1,2 = Vl,2(zc) (155)

Making a scale transformatin

11 Ck2/3(156)
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and assuming that we of the same order as I, Eq.(153) can be reduced to the

leading order in a:

d2x 2 1 d d x _ sOX] 0 (157)

For 7 > O(a-1/3) the last tram is neliible, the solutions are the Airy runctions. For

77 < l(a- a/3) t last term is not smaller than the second term, however, all terms are

small; the correction to the Airy functions vaniahm in the large a limit. Hence the slowly

varying solutions are

x(C) m &Ai(al/ 1/3 ) + b Bi(a2 /3C2/3 o) , (158)

where &+ and k re arbitrary constants. This show. that the scaling, Eq.(156), is indeed

a corrsect one. Eqs.(141) and (158) give one set of solutions. Pulling out another fast

ocillating factor e- aq-C (cf. Eq.(141)) we can obtain the other set of solutions in Eq.(135).

13L Proposition 3. Consider the anti-Stokes line L1. Let z, denote a point at a

fixed distance from se and let LT denote LI, eccluding the segment from z, to zj. We

assume the following conditions to be true 1. Lt does not pas through singularities of

the potentials. 2. the mappings fi(z) f qi(z)d,i = 0,1, are one to one 9; 3. Im(&)
ze

incream monotonically as x movn to the right on L, 10. If the following functions can be

bounded by N,

F0(s) J(Ifoo(z)l + IfO(z)f) qJeo(z)dz, (159)

F1(z) f (fu(z) + Ifio(z)1) lq(z)dzl f (160)
z

•f 1 h(z) Idzi ,s 0,1 ,(161)
2 1 O \(z)± q(

where fij and h are given by Eqs.(167)-(170), then, for z on Lj, there is a solution of the

following form,

40 (,) 204 @(z, Z) (162)
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0 (163)

where (,) is defined in Eq.(36).

Proof. Deflnin a new set of variables

xi(Ci(z)) = 2*(z) ,i =0,1 (164)

the Schrw~dinger equation (33) can be written as

d2  2  d

dt2 + a xo = foo(6o)xo + foj(o)xj + h(Co)-ZOXi (15)

__2 2d

^12X + a xi fu,(C)Xl + !1O(fi)XO - h(Cj);V-O (168)
.1*1

where

h(2) = (167)(6oIfII)1/2

(7oAY - )4 + *0, 1 (168)

fo ( o) 1 -(on $I ") (169)

1
fio(fi) = (&I' I)3/2 (-e"eo' + (170)

*' The correspondence between variables 0 and j is one-to-one. Similar to the proof of

proposition 1, we transform (165) and (166) into coupled integral equations 6:

(0 d K O ( 0, Z'o) x
xo(RD) X ) (CO) +Jf6

Jd

"tfoo(Fo)xo(o) + fo1(Zo)x1(ZI) + h(- ) (171)
I CO 71) zi
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where X0and XIare solutions of the homogeneous equations:

-Oo(D aOei"4 + bo-(173)

x(0)) ='j*4 + bei4 14

and Kc, is the kernel,

j~Choosing the lower Konsfteiterl ob href o+il and (175)i

x(0)

(0)

"N the integral equations becomes,

fo

-~XO(C) = + f dZOK. {fOOXO + fOiXi + h--i(178)

xi(fi) f {1,fifixi +'fioxo - h-X(19
fiedFx}(19

-~ The fiust iteration oa Eqs.(178) and (179) gives

to

XO(RO) = ei*O + f dZOKjOfOde (180)

/6 c flo - - 1 1xi (fi) =Jd'K (I - i (81

Eq.(180) includes only one channel, which in similar to the ordinary potential scattering

problem; the integral in negligible. We will only show the the bound for the second term

of (181):

-] el dhe~ (182)
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Performiung an integration by part (which is simnilr to the step from Eq.(128) to Eq.(130)

'4~ )woti i O(BI +B 2 +B 3 +B 4 ) (183)

where

BI= (z)qj(z) (184)

B2 = h(z)q(z) (185)

B3  ( q 1 () ()(16
h1 q(z') -q(z')

00

B4 fdx k7 qO(zl)+ q1(187)

00

From the definition of L1 , Ie4O~(Ca1) I in 1. Therefore B1, B2 and B3 are bounded for z on

L-. From condition 3 about LI we see that the real part of the exponent of B4 is always

low than 0. Thus B4 is also bounded. Therefore we have

Xj' (Z) " (188)

The proof of proposition 4 is similar to what we have just shown. We only give the

statement.

Proposition 4. Consider the anti-S toke. line. L2. Let z2 denote a point at a fixed

distance fr-om ze, and let Li denote L2, excluding the segment from ze to z2. We assume

the following conditions to be true: 1. L2 doe. not pans through singularities of the

potentials. 2. the mappings Ci(z) =f q,(z)dx, i = 0, 1, are one to one; 3. 1m(&) increases

monotonically an z move. down to IL on L2 11. If the following functions can be bounded

by N9

FO (z) f (Ifoo(z)I + Ifol(z)I) JqO(z)dzJ (189)
Z2
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F1(z) = f (jfjj(z)j + Ifio(z-)I) lqi(z)dzl (190)

where fi,, and h are given by Eqs.(167)-(17o), then, for z on Lj, there is a solution of the

following form,

.~*where to (z, ZC) and 41 (z, ze) are defined in Eqsa.(36) and (37) respectively.
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FIGURE CAPTIONS

Fig. 1. The typical topology of the complex transition point zc and anti-Stokes lines

Ll and L 2 are shown for above barrier reflection problem. Ll extends to +oo and becomes

parallel to the real axis at a distance yj asymptotically. L 2 behaves similarly as it extends

to - 00.

Fig. 2. The transition points z0 , zl, z, z, and anti-Stokes lines LI, L 2 , L 3 , L4 are

shown for the curve noncrousing case in Sec. V: 2(a) for E = 10 and 2(b) for E = 1.
Fig. 3. The absolute values of 4(0+)(z) and D(0+)(z) for the case of Fig. 2(a) are

shown for several values of a: 3(a) for a = 1, 3(b) for a = 5 and 3(c) for a = 10. 1@00+)(z)l

is represented by the solid line and ItO+) (z)I by the dash line. The vertical dot-dash line

marks the psition of z. Note that for large a, 40+) (z) becomes greater than 0+)(z)

as x moves to the left of 2.

TABLE CAPTION

Table L The numerical results of exact and semiclassical solutions for the S matrix

are shown. The semiclaisical results are calculated from Eqs.(91) and (92). Note that the

differences between them decrease as a is increased.
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TABLE I

Case l. Soo Sol

E a Exact Semiclassical Exact Semiclassical
1 1 .532, .808) ( .488, .873) (.072,-.243) ( .130,-.323)

5 (.552,-.834) ( .557,-.831)( .308, .103) .10-2 ( .260, .092) .10-2
10 (-.924, .383) (-.925, .380) (-.166, -. 132) .10- 4 ( -. 157,-.127) .o - 4

10 5 ( .564,-.825) (.343,-.939) ( .454,-.017) .1o- 1 ( .574,-.019) 0- 1
10 (-.734, .678) (-.844, .765) (-.328, .022) .10-1 (-.345, .022) 1o-

20 (-.993, .115) (-.985, .171) (-.608, .080) .10- 2 (-.613, .080).10- 2

Ca.. II. S0 So

E a Exact Semiclassical Exact Semiclassical
0.7 10 ( .Mo,-.038) ( .9,-.038) ( .207, .042).10-1 ( .165, .035).10-1

20 (-.079,-.997) (-.079,-.997) ( .258, .114).10- 3 ( .227, .102).10- 3

- 30 (-.993, .119) (-.993, .118) ( .143, .104) .10-  ( .126, .093) .10-

1.5 10 ( .979,-.126) ( .739,-.674) (-.103,-.120) (-.258,-.305)
20 -. 874,-.402) (-.9 ,-.091) ( .045,-.269) ( .053, -. 311)
30 ( .430, .887) ( .604, .797) ( .. 44,-.085) (.147,-.087)
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